

Date: 11-11-2024

Dept. No.

Max. : 100 Marks

Time: 09:00 am-12:00 pm

SECTION A - K1 (CO1)

Answer ALL the Questions (10 x 1 = 10)

1. Answer the following

- a) Define a Subspace of a vector space.
- b) What is an orthonormal set?
- c) When a linear transformation is said to be regular?
- d) Define Matrix of a Linear Transformation
- e) Define Unitary transformation

2. Fill in the blanks

- a) If $\dim_F V = m$ and $\dim_F \text{Hom}(V, V)$ is _____
- b) If V is a vector space over F , then $\text{Hom}(V, F)$ is called as _____
- c) If $T \in A(V)$, then VT , is defined by $VT = \{vT \mid v \in V\}$ is called as _____ of T .
- d) The linear transformations $S, T \in A(V)$ are said to be similar if there exists an invertible element $C \in A(V)$ such that it satisfies the relation _____.
- e) $T \in A(V)$ is unitary if and only if $TT^* = _____$

SECTION A - K2 (CO1)

Answer ALL the Questions (10 x 1 = 10)

3. Choose the correct answer from the following

- a) The vectors $v_1 = (1, 1, 0)$, $v_2 = (1, 0, 1)$, and $v_3 = (0, 1, 1)$ in R^3 , then
 - a) the vectors are Linearly Dependent
 - b) the vectors are Linearly Independent
 - c) v_1 is Linear combination of v_2
 - d) v_2 is a Linear combination of v_1

- b) The norm of the Vector $(2, 0, -1)$ is
 - a. 5
 - b. -5
 - c. $\sqrt{5}$
 - d. None of these

- c) If V is finite-dimensional over F then for $S, T \in A(V)$
 - a) $r(ST) \leq r(T)$
 - b) $r(ST) = r(T)$
 - c) $r(ST) > r(T)$
 - d) None of these

- d) If $T \in A(V)$ and if $\dim_F V = n$, then T can have at most _____ distinct characteristic roots in F .
 - a) n
 - b) $n-1$
 - c) $n+1$
 - d) one

- e) The Characteristic roots of a Skew-Hermitian matrix are
 - a) only zero
 - b) Only Real
 - c) either Real or Imaginary
 - d) either Zero Or purely Imaginary

4. State True or False

- a) Any subset of a Linearly Independent set is Linearly dependent.
- b) w^\perp is a subspace of the vector space V .
- c) If V is finite-dimensional over F , then $T \in A(V)$ is singular if and only if there exists a $v \neq 0$ in V such that $vT = 0$.
- d) If $T \in A(V)$ has all its characteristic roots in F , then that there is no basis of V in which the matrix of T is

	triangular.
e)	$T \in A(V)$ is called self-adjoint or Hermitian if $T^* = T$.

SECTION B - K3 (CO2)

Answer any TWO of the following in 100 words each. (2 x 10 = 20)

5. If V is a finite dimensional vectors space and v_1, \dots, v_r is a Linearly Independent subset of V then it can be extended to form a basis of V .
6. Deduce the proof of Schwarz inequality.
7. If V is finite-dimensional over F , then prove that $T \in A(V)$ is singular if and only if there exists $v \neq 0$ in V such that $vT = 0$.
8. Let V be a set of all polynomials in x of degree ≤ 3 over F . Define D on V as:

$$(\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3) D = \beta_1 + 2\beta_2 + 3\beta_3 x^2$$
. Determine the matrix of D .

SECTION C – K4 (CO3)

Answer any TWO of the following in 100 words each. (2 x 10 = 20)

9. Show that the vectors $v_1 = (0, 1, -2)$, $v_2 = (1, -1, 1)$, $v_3 = (1, 2, 1)$ are Linearly Independent in R^3 .
10. If V is a finite-dimensional inner product space and if W is a subspace of V , then prove that $V = W + W^\perp$. More particularly, V is the direct sum of W and W^\perp .
11. If $\lambda \in F$ is a characteristic root of $\in A(V)$, then prove that for any polynomial $q(x) \in F[x]$, $q(\lambda)$ is a characteristic root of $q(T)$.
12. Prove that if $T \in A(V)$ then $T^* \in A(V)$. Moreover, for all $S, T \in A(V)$ and all $\lambda \in F$, show that

$$1. (S + T)^* = S^* + T^* \quad 2. (ST)^* = T^* S^*$$

SECTION D – K5 (CO4)

Answer any ONE of the following in 250 words (1 x 20 = 20)

13. If V is finite-dimensional and if W is a subspace of V , then Deduce that $\dim V/W = \dim V - \dim W$.
14. If V is a finite-dimensional inner product space and v_1, \dots, v_n is a basis of V then Construct an orthonormal basis for V by Gram-Schmidt orthogonalization process

SECTION E – K6 (CO5)

Answer any ONE of the following in 250 words (1 x 20 = 20)

15. Prove that if $T \in A(V)$ has all its characteristic roots in F , then there is a basis of V in which the matrix of T is triangular.
16. a) If $(vT, vT) = (v, v)$ for all v in V then Justify that T is unitary. (10 Marks)
b) Deduce that “The linear transformation T on V is unitary if and only if it takes an orthonormal basis of V into an orthonormal basis of V ”. (10 Marks)

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$